
NASA-CR-lgOO30

An EVACS Simulation
with Nested Transactions

p..

,-4

,-4 u_ O

0 _ C

Z
C3_

Ul C
Z ',.,'

I_E _ O

wO E
Z _,. ,_,

,03= , u_

C-, _ t,.-
Cf', '.-4 C
,,-4 Z O

c< b-_ £.,) .._

I _ "r';E

David Auty
SofTech, Inc.

Collin Atkinson
UHCL

Charlie Randall
GHG Corporation

Release 01

June 30, 1992

/
/

/7

Cooperative Agreement NCC 9-16

Research Activity No. SE.16

UHCL Subcontract 102

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

TECHNICAL REPORT

An EVACS Simulation

with Nested Transactions

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Mr. David Auty of SotTech, Inc., Dr. Collin
Atkinson of UHCL and Mr. Charlie Randall of GHG Corporation. Dr. Charles McKay

served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center

and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Ernest M. Fridge III, Deputy Chief of the Software Technology Branch,

Information Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government

An EVACS Simulation with Nested Transactions

Release 01

June 30, 1992

University of Houston-Clear Lake Subcontract No. 102

NASA/JS C Cooperative Agreement NCC9-16

RICIS Project No. SE.16

Prepared by:

David Auty

SofTech, Inc.

1300 Hercules, Suite #105

Houston, TX 77058

Collin Atkinson

University of Houston-Clear Lake

2700 Bay Area Blvd

Box 444

Houston, TX 77058

Charlie Randall

GHG Corp.

1300 Hercules

Suite #111

Houston, TX 77058

An EVACS Simulation with Nested Transactions

Table of Contents

1. Introduction ... 1

2. A Transaction Taxonomy and Overview .. 1

3. A Design for Transaction Support ... 6

Appendix A Bibliography .. A-1

Appendix B EVACS Simulation in Smalltalk .. B-1

MISSION

EVACS Simulation Report

111

6/30/92

An EVACS Simulation with Nested Transactions

1. Introduction

This report documents the recent effort of the MISSION Kernel Team on an EVACS simulation

with nested transactions. The team has implemented the EVACS simulation [Atkinson92] along

with a design for nested transactions. The EVACS simulation is a project wide aid to exploring

Mission and Safety Critical (MASC) applications and their support software. For this effort it

served as a trial scenario for demonstrating nested transactions and exercising the transaction

support design.

The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control

System (EVACS), in particular, just the selection of communication frequencies. Its current

definition is quite narrow, serving only as a starting point for prototyping purposes. (EVACS

itself may be supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover).

Initially the simulation of frequency selection was written without consideration of nested

transactions. This scenario was then modified to embed its processing in nested transactions. To

simplify the prototyping effort, only two aspects of the general design for transaction support have

been implemented: the basic architecture and state recovery.

The simulation has been implemented in the programming language Smalltalk. It consists of three

components:

• Simulation support code which provides the framework for initiating, interacting and

tracing the system.

• The EVACS application code itself, including its calls upon nested transaction support.

• Transaction support code which implements the logic necessary for nested transactions.

Each of these components deserves further description, but for now only the transaction support

will be discussed.

2, A Transaction Taxonomy and Overview

An understanding of nested transactions comes from a progressive set of definitions. It begins

with a relatively simple notion of actions and objects and adds complexity in several incremental

steps. These steps include adding robustness to actions to form transactions, adding distribution to

transactions and adding hierarchical nesting to transactions.

An action is a hierarchical composition of primitives (reads & writes) affecting several "objects"

and which preserves system consistency. In its simplest form, an action is simply a read or write

MISSION 1

EVACS Simulation Report 6/30/92

primitive affectingoneobject. Moregenerallyit consistsof manyreadsandwrites,affectsmany
objects, and may be hierarchically composedof sub-actions. A primitive action inherently
preservesconsistencysinceit only affectsoneobject. Morecomplexcombinationsof primitives
must preservean overall consistencyof systemstatein order to be properly consideredas
"actions".

An object, in this case, is a part of, or partition of, the total system state. In our primary reference

on transactions [Moss85], an object is defined as a data item, but this concept of an object

generalizes quite well to that of current object oriented definitions. A system is conveniently

considered to consist of a collection of cooperating objects, each with potentially active and passive

processing associated with them. An action can be equivalently defined as a unit of processing (a

method or procedure) which interacts with many objects and which preserves a measure of

consistency through its execution. Defining the measures of consistency, the steps which preserve

consistency as well as the combinations of steps which may violate consistency temporarily, is an

essential part of reliable system design.

A transaction is an action which exhibits failure atomicity and serializability. These two constraints

provide the basis for constructing reliable systems out of multiple interacting actions. Failure

atomicity refers to the property of either completing successfully or having no effect at all. This

implies in the case of failure the restoration of objects which may have been altered during the

transaction prior to the detection of failure. In practice, this can be achieved in many ways.

[Moss85] describes two approaches as recovery from saved state and recovery via undo's, and

presents details for the first of these which we will adopt. Maintaining recovery states is related to

the technique of checkpointing known correct values as a computation proceeds. Recovery states

are maintained in secondary storage which, depending on the degree of reliability required, may be

itself duplicated or otherwise designed to maintain integrity (elsewhere referred to as stable storage

or permanent storage).

Serializability refers to the nature of multiple actions which may interact through concurrent

execution. If they are serializable, then one can establish after their completion a state which is

equivalent to that which would be arrived at through some serial execution of the transactions.

Stated another way, actions are serializable if they incorporate some mechanism of coordination

which prevents their mutual corruption. Again this can be achieved in several ways. [Moss85]

defines two approaches as access locking and timestamping with subsequent resolution. The

approach we have taken uses access locking to ensure that a proper ordering of execution is

achieved.

Object locking for transaction serialization is an extension to the common rules of locking for

concurrency control. First note that we have chosen simple object reads and writes as primitives,

thus the locking rules are for read/write access control. A read request is granted if no write

request has been granted. A write request is granted if no other request, read or write, has been

granted. Proper serializability requires further that no granting of access is released until all access

is released when the action completes.

MISSION

EVACS Simulation Report

2

6/30/92

In summary,our approachto transactionsrequiresthe useof secondarystorageto implement
failureatomicity(recoveryfrom failuresasif thetransactionneverexecuted)andspecializedobject
lockingto ensureserializability(concurrentactionsdonotinterfere).

A distributed transaction is a transaction which effects multiple objects at multiple sites. It adds to

the paradigm of transaction processing the ability to recover from multiple and independently

fallible processors and failed communications. Note that distribution of objects participating in a

transactions does not require a change or extension to our general definition of transactions, i.e.,

distributed transactions obey the same rules for failure atomicity and serializability. Only the

processing required to implement such transactions is modified. The modification consists of the

addition of a two-phase commit protocol to ensure that all objects involved in the transaction are

updated or reverted consistently.

The two-phase commit protocol requires that each participant object involved in the transaction first

prepare to commit and respond that it is in fact prepared. Following successful processing of the

preparation phase the transaction coordinator can logically toggle its own records to indicate

commitment and broadcast this to all participants in the commitment phase. In this way, prior to

commitment any participant not able to commit forces an abort. Following preparation all

participants are able to fall forward or backwards. It is the singular action of the coordinator which

transitions the transaction to commitment. Participants must then wait for the coordinator to signal

which action they should take. In this way, assuming all node and communications failures are

recoverable, no unrecoverable inconsistency of commitment or failure of the transaction can occur.

The Alpha kernel [Northcutt87] introduced, and we will assume for Mission as well, that all

objects are truly independent; objects and messages can fail even though no physical distribution or

node failure is involved. Thus, for the purposes of transaction processing, each object essentially

becomes its own "virtual node". As a consequence of this perspective, any transaction requires the

logic of distributed transactions (i.e., two-phase commits). Each object must handle its own

participation in the transaction (i.e., handle enter transaction, prepare to commit,

completecommit and abandon_wansaction messages).

The final complexity which we add to this discussion is that of nested transactions. Nested

transactions add the same feature of hierarchical composition as was defined for actions, allowing

nested actions to be defined as nested transactions. The advantage of nested transactions is the

partitioning of work being done which may require retries or alternative processing in the face of

failure. If all processing which must commit or fail together must be executed as a single

transaction, then failure requires reprocessing of the entire transaction. If instead the processing is

broken into several sub-transactions, then failure of one sub-transaction can be handled

independently of the other sub-transactions before signalling failure of the entire transaction. We

still have the property that if the top-level transaction fails then all participants are restored as if no

processing occurred, and we have the same property for the sub-transactions which allows for

consistency of recovery within the transaction as well.

MISSION

EVACS Simulation Report 6/30/92

The introduction of nestedtransactionsaltersthe generalhandlingof transactionsin two ways.
First, the object locking rules mustbe modified to ensureproper coordination throughoutthe
transactionand within the transaction. Secondly, recovery of nested transactionsrequires
essentiallya stackof recoveryvaluesbeingkept.

The changeto the object locking rules relates to the handling of subtransaction completion. In

normal transaction processing all object access required by the transaction is held until the

transaction completes, and is then released. In the case of a subtransaction, the access restriction

must be held until the entire top-level transaction completes. This is handled by having the sub-

transaction pass the object lock to its parent transaction for it to hold until completion. The parent

may then pass the lock to its parent, if present, and so on until the top-level transaction is reached.

The second change to the object locking rules relates to the granting of access. Again, normal

transaction access rules address "peer" level transactions attempting to access the same object. A

special case exists if a subtransaction attempts to access an object which has already been accessed

within a superior (e.g. parent) transaction. This can occur in two ways. It may be (a) that the

object is required directly by a superior transaction and by the subtransaction, or it may be (b) that

the object was required for a previous subtransaction. Case (a) is a difficult situation since it is not

clear whether the superior transaction has completed its access in a consistent way at the time of the

subtransaction's request for access. Unfortunately it is difficult to distinguish at runtime case (a)

from case (b). Thus it is left either as a constraint on the programmer, as a constraint of the

language, or to other pre-runtime controls not to implement case (a).

Case (b) is actually quite normal and acceptable. It requires, however, that the locking rules be

defined to accommodate it. Note that at the end of the fh'st subtransaction the object lock was

passed up to the parent transaction. Thus when, during the second subtransaction, access to the

object is requested the lock is owned by its parent. In this case, should be granted based on the

possession of the lock by the parent. Generalized, the locking rules can be extended to the

following:

• allow read access if all transactions holding a write lock are superiors of the subtransaction

making the request, and

• allow write access if all transactions holding a lock in any mode are superiors of the

subtransaction making the request.

The last note on nested transactions addresses the multiple levels of recovery required. For single

level transactions a single recovery state is necessary for restoration. In the case of nested

transactions, an object may be involved in several levels of nested transactions (e.g., case (b) just

described). In fact, the rules of transaction participation and object locking prevent an object from

participating in multiple transactions except when nested. Because an object may need to recover

from a subtransaction failure prior to recovery from the parent transaction failure, a recovery state

MISSION

EVACS Simulation Report

4

6/30/92

is necessaryfor thenestedlevelsanobjectparticipatesin aswell asfor theouter-mosttransaction
level. A basic stack of recovery states meets this requirement.

MISSION

EVACS Simulation Report

5

6/30/92

$. A Design for Transaction SuDDort

Our transaction design is based on two class definitions; objects of interest are either transaction

managers or transaction participants. The application itself is defined as objects which inherit from

the transaction participant class. This implies every application class is a subclass of the

transaction participant class. The full processing of distributed nested transactions is incorporated

into the definitions of these two object classes. This functionality includes two-phase commit,

uniform recovery, concurrency control (lock management), lost-participant and manager recovery

and schedulability / deadlock resolution. However, for the current prototype only the general

architecture and recovery processing were implemented.

Note that the design was conceived with the idea in mind to eventually merge transaction semantics

into the programming language itself. As a consequence and in consideration of existing languages

(e.g., SmaUtalk, Ada, Dragoon), it assumes a reasonable transformation of a "naive" application to

one which incorporates transaction processing.

Transaction managers are defined to coordinate transaction participants and any subtransactions

which are defined. Other than keeping a record of these participants and subtransactions,

transaction managers are principally responsible for implementing the coordinator logic of two-

phase commits as was described earlier. Transaction participants are defined to participate in

transactions and, in particular, potentially nested transactions. Transaction participants are

responsible for saving their current state, maintaining a stack of recovery states (in stable storage

which can survive system crashes) and for properly responding to the various method calls

associated with transactions: enter, prepare_commit, complete_commit and abandon_transaction.

The treatment of nested transactions deserves some special comment here. Our implementation of

the transaction manager accommodates the situation of being nested within another transaction, but

in general defines the processing to be identical for a sub-transaction as for a top-level transaction.

This is possible partly because the treatment of state saving and recovery is handled by the

participants. The singular addition required of a nested transaction manager is the passing of the

participants list to the parent transaction manager.

Our design focuses more processing on the transaction participant. In particular, it is left to the

participant to implement its own methods for saving and restoring its state. The transaction

manager coordinates processing by issuing prepare to commit, complete_commitment or

abandon_transaction commands, but does not receive or transmit participant states. Each

participant thus keeps its own recovery stack.

A particularly significant aspect of the design is the dynamic nature of object participation. Objects

participate in transactions when they are called upon, without any predefined list of participants

being given to the transaction manager in advance. The process of entering into a transaction

occurs as a part of calling an object. Prior to initiating the particular method of the call, the general

MISSION

EVACS Simulation Report

6

6/30/92

transactionentry codeis executed.Onceentered,theobject is aparticipantuntil theendof the
transaction. The correspondingprocessingfor leaving a transaction occurs at transaction
commitmentor abort.

Enteringatransactiongenerallyrequiresthesavingof thecurrentstateof theobjectasanewentry
on therecoverystackandnotifying thetransactionmanagerof thenew participant. This is only
done,however,if theobjecthasnot alreadyparticipatedin this transaction. The recoverystate
mustalwaysbe the stateof theobjectbeforeany involvementin thetransaction. To insurethe
recoverystateis savedonly once,arecordis keptof thecurrenttransactionby eachobject. Thus
asapartof transactionentryacomparisonis madebetweenthecalling transactionandthecurrent
transaction. Only if theyaredifferent (thecalling transactionis a subtransactionof thecurrent
transaction)is thestatesaved.

As was noted already, an object leaves a transaction at the time of transaction commitment or abort.

Leaving a transaction implies poping the stack of recovery states. If the transaction commits the

recovery value is tossed away. If the transaction aborts, the object assumes the recovery state as

its current state, abandoning its previous current state.

There is a special case of leaving a nested transaction. If the transaction being left is nested (has a

parent), then the object must be entered into the parent transaction. Again an entry check is made if

the object had previously participated in the parent transaction. If this is the case then no further

action should be taken. The object already has a recovery value from its earlier participation in the

parent transaction on the stack which was made current when the subtransaction's recovery stack

was popped.

If the object had not previously participated in the parent transaction (the subtransacfion was f'n'st to

call upon the object) then an entry into the parent transaction must take place. Note, however, that

the recovery state to be pushed on the stack is the state of the object before its involvement in the

subtransaction. This is the recovery value normally popped upon leaving the transaction. In fact,

the recovery state needn't be popped at all (only to be pushed again), the recovery value can simply

be left in place.

This processing ensures that all participants are kept in synchrony with the nesting of transactions

which they are involved in. The recovery stack is not necessarily as deep as the nesting of

transactions because the participants may not be entered into parent transactions until after a

subtransaction commits or aborts. The process of being entered into the parent transaction as a part

of leaving a nested transaction ensures that the proper set of recovery values is being maintained

for each participant.

MISSION

EVACS Simulation Report

7

6/30/92

[Atkinson92]

[Moss85]

[Northcutt87]

Appendix A - Biblioqra_DhV

Atkinson, Colin

"Extending the EVAC System", A Working Paper for the Software Engineering

Research Center on The MISSION Project, MISSION GEN/WP/101/01, Feb.

10, 1992.

Moss, Elliot B.

"Nested Transactions, An Approach to Reliable Distributed Computing", The

MIT Press, 1985.

Northcutt, J. D.

"Mechanisms for Reliable Distributed Real-Time Operating Systems, The Alpha

Kernel", Academic Press, 1987.

MISSION

EVACS Simulation Report

A-1

6/30/92

EvacsSimulationin SmallTalk

IT

Application : EVACS Simulation -- modified to include transactions

A simulation of some aspects of the Extra-Vehicular Activity Control System

(EVACS). In particular, this simulation looks only at the interaction between a

central controller and a set of MMUs, and more specifically at the selection

of communication frequencies. The simulation has been extended to implement

frequency changes as a set of nested transactions. Changes must uniformly affect

both base station antennas and the Manned-Manuvering-Units (MMUs). Different

scenarios of transaction success and failure can be run by having different

subtransactions of the scenario succeed or fail.

The simulation allows user control by the choice of frequency. Each digit of the

three digit frequency controls one of the elements in the simulation and the

subtransactions it participates in. In general values less than 5 succeed while

values 5 or greater fail.

Digit 1 affects the central controller.

Digit 2 affects the MMU.

Digit 3 affects the antenna manager.

Also, digit 3 controls the antenna manager's antenna array. These antennas

succeed if digit 3 is 4 or 5, but fail otherwise. For example:

ll4Hz is complete success,

914Hz is failure only of the central controller (root transaction)

Classes : EvacsRoot

TransactionManager PermanentStore

TransactionParticipant

Evacs

SimWindow TextDisplayer TextDisplayPane

CentralController MMU AntennaMgr Antenna

EvacsStack

Example : (Evacs new) start.

Classes are grouped into three categories:

Transaction support,

Simulation support, and

Evacs application definition.

Classes definitions are presented in this order, then the class and instance

method definitions in the order:

Simulation support, Evacs application definition, Transaction support

which more closely presents the methods top-down in order of exection

v, f

MISSION

EVACS Simulation Report

B-1

6/3O/92

Evacs Simulation in SmallTalk

(class definitions)

" Transaction Support Classes " i

Object subclass: #EvacsRoot

instanceVariableNames: ''

classVariableNames: '' poolDictionaries: ''

" an empty class, no protocol or representation

collects subclasses into one parent

-- !

EvacsRoot subclass: #TransactionManager

instanceVariableNames: 'id participants status

transactionHierarchy subTs '

classVariableNames: '' poolDictionaries: ''

" serves to coordinate transaction 2-phase commit and abort

Class Methods

runAsNewTransaction:id:parent:receiver:

Instance Methods

initWithID:, setParents:, processingComplete, abort,

registerParticipant:, inheritParticipants:, registerSubTransaction:,

transactionHierarchy, status

-- !

EvacsRoot subclass: #TransactionParticipant

instanceVariableNames: 'currentTM permanentStore status '

classVariableNames: '' poolDictionaries: ''

" provides protocol and representation for objects which participate in

transaction

Class Methods

new

Instance Methods

init, currentState,

,, !

setStateTo:, addState:,

enter:, prepareCommitment, completeCommitment,

restoreState:, prepared

abandonTransaction

EvacsRoot subclass: #PermanentStore

instanceVariableNames: ' currentState recoveryStack '

classVariableNames: '' poolDictionaries: ''

" provides facility for saving an object's state & recovery states

Class Methods

new

Instance Methods

init, push:, update:, pop, readCurrent, readTop

vv |

MISSION

EVACS Simulation Report

B-2

6/30/92

EvacsSimulationinSmallTalk
(classdefinitions)

" Simulation Support Classes " I

OrderedCollection subclass: #EvacsStack

instanceVariableNames: '' classVariableNames: '' poolDictionaries: ''

" subset of and renaming of orderedCollection methods, no new representation

Class Methods (none)

Instance Methods

push:, pop, pushAll:, readTop

vv |

TransactionParticipant subclass: #Evacs

instanceVariableNames: 'simWindow controller '

classVariableNames: '' poolDictionaries: ''

" Collects subclasses into parent. Defines shared representation

(all subclasses get a reference to simWindow and controller).

Defines method to initiate a simulation (start)

All subclasses are potential transaction participants

" I

TextEditor subclass: #TextDisplayer

instanceVariableNames: '' classVariableNames: '' poolDictionaries: ''

" modified TextPane dispatcher, method modify always returns false

(closing will not ask to have changes saved), no other changes

I! |

TextPane subclass: #TextDisplayPane

instanceVariableNames: '' classVariableNames: '' poolDictionaries: ''

" modified TextPane, defaultDispatcherClass returns TextDisplayer

no other changes

" I

Evacs subclass: #SimWindow

instanceVariableNames: 'controllerFreq antennaFreq mmuFreq inputPane

msgStream displayPane '

classVariableNames: '' poolDictionaries: ''

" Provides the display and interaction model for the simulation.

Creates the window, panes (Input, Msg and Display) and menus objects

Class Methods (none)

Instance Methods

externally called methods

openWith, antennaFreq:, controllerFreq:,

anMMUFreq:, textOut:

internally called methods (called by window panes created by openWith)

inputMenu, nullMsg, defaultInput, displaySim:

promptForFreq, takeNewFreq, callController:

ii I

MISSION

EVACS Simulation Report

B-3
6/30/92

Evacs Simulation in SmallTalk

(class definitions)

" EVACS application classes " i

Evacs subclass: #CentralController

instanceVariableNames: 'mmuArray antennaMgr frequency mmusCount'

classVariableNames: '' poolDictionaries: ''

" models the central controller (at base station) for the Evacs application

Class Methods (none)

Instance Methods

setMaxMMUs:andSimWindow:, currentState, setStateTo:, prepared,

registerMMU:, changeFreq:

I! I

Evacs subclass: #MMU

instanceVariableNames: 'frequency number '

classVariableNames: '' poolDictionaries: ''

" models behavior of an independent Manned Manuvering Unit

Class Methods (none)

Instance Methods

setController:andSimWindow:, currentState, setStateTo:,

changeFrequencyTo:

vv |

prepared,

Evacs subclass: #AntennaMgr

instanceVariableNames: 'antennaArray frequencyArray'

classVariableNames: '' poolDictionaries: ''

" coordinates a collection of three antennas at the base station

Class Methods

newWith:

Instance Methods

setSimWindow:andMaxMMUs:, antennaArray

currentState, setStateTo:, prepared, changeAntennasTo:

11 I

Evacs subclass: #Antenna

instanceVariableNames: 'frequencyArray '

classVariableNames: '' poolDictionaries: '' |

" models behavior of an independent antenna at the base station

Class Methods (none)

Instance Methods

setMaxMMUs:andSimWindow:andController:,

currentState, setStateTo:, prepared, changeFrequencyOfMMU:

-- |

MISSION

EVACS Simulation Report

B-4
6/30/92

EvacsSimulationin SmallTalk
(simulationsupport)

!Evacs class methods t

!Evacs methods t

" Collects subclasses into parent. Defines shared representation

(all subclasses get a reference to simWindow and controller).

Defines method to initiate a simulation (start)

All subclasses are potential transaction participants

start

I m_s I

maxMMUs := 3.

simWindow := (SimWindow new).

controller := (CentralController new)

setMaxMMUs : maxMMUs

andSimWindow: simWindow.

(MMU new)

setController: controller

ands imWi ndow: simWindow.

(MMU new)

setController : controller

andSimWindow: simWindow.

(MMU new)

setController: controller

andSimWindow: simWindow.

(simWindow openWith: controller).

II

MISSION

EVACS Simulation Report

B-5

6/30/92

EvacsSimulationin SmallTalk
(simulationsupport)

' SimWindow class methods ! t

! SimWindow methods i

" Provides the display and interaction model for the simulation.

Creates the window, panes (input, msg and display) and menus objects

: contollerFreq antennaFreq mmuFreq inputPane msgStream displayPane

***** externally called methods *****

users of SimWindows can openWith, then update frequencies and write out msgs

openWith: acontroller

I topPane msgPane I

controller := acontroller.

controllerFreq := '0Hz'.

antennaFreq := '0Hz'.

mmuFreq := '0Hz'.

topPane := (TopPane new) label: 'Kernel Simulation'

(topPane addSubpane:

(inputPane := (TextDisplayPane new)

model: self; name: #defaultInput; menu:#inputMenu;

framingRatio: (0 @ 0 extent: (2/3) @ (1/4)))).

(topPane addSubpane:

(displayPane := (NoScrollGraphPane new)

model: self; name: #displaySim:;

framingRatio: (0 @ (1/4) extent: (2/3) @ (3/4)))).

(topPane addSubpane:

(msgPane := (TextDisplayPane new)

model: self; name: #nullMsg;

framingRatio: ((2/3) @ 0 extent: (1/3) @ I))).

msgStream := (msgPane dispatcher).

((topPane dispatcher) open; scheduleWindow).

!

antennaFreq: newFreq

antennaFreq := newFreq.

(displayPane update).

!

controllerFreq: newFreq

controllerFreq := newFreq.

(displayPane update).

!

anMMUFreq: newFreq

mmuFreq := newFreq.

(displayPane update).

!

textOut: aString

(msgStream nextPutAll: aString; cr).

!

"continued"

MISSION

EVACS Simulation Report

B-6

6/30/92

EvacsSimulationin SmallTalk
(simulationsupport)

" SimWindows methods continued "

" ***** internally called methods *****

called by window panes (created by openWith:) at various times

inputMenu establishes a menu providing command initiation for the user.

User interaction in the system consists solely of selection of text in

the inputPane and/or menu selection. The menu provides two commands,

implemented here by promptForFreq and takeNewFreq, promptForFreq puts

up a dialog box for user input, takeNewFreq takes whatever is currently

selected in the inputPane as the user input, promptForFreq and takeNewFreq

are the only methods which call out from the window to the model, both

calling controller.changeFreq

nullMsg

A,,

defaultInput

^('999Hz 991Hz 919Hz 914Hz 199Hz 194Hz ll9Hz ll4Hz

lllHz ll5Hz 911Hz 915Hz')

inputMenu

^((Menu labels: ('Prompt for Freq.\Selected New Freq'

breakLinesAtBackSlashes)

selectors: #(promptForFreq takeNewFreq))

title: 'Operations')

promptForFreq

l inputString I

inputString := (Prompter prompt: 'Please type desired frequecy'

default: 'll4Hz').

(self textOut: ('initiating change to ', inputString)).

(self callController: inputString).

takeNewFreq

[inputString I

inputString := (inputPane selectedString).

(self textOut: ('change requested, to ', inputString)).

(self callController: inputString).

"continued"

MISSION

EVACS Simulation Report

B-7

6/30/92

Evacs Simulation in SmallTalk

(simulation support)

" SimWindows methods continued "

callController: msg

"with transaction code..."

I success tm I

tm := TransactionManager

runAsNewTransaction:

[controller changeFreq: msg]

id: 'promptForFreq=>controller.changeFreq '

parent: currentTM

receiver: controller.

success := ((tm status) = #completed).

(self textOut: ('transaction success: ', (success printString))).

displaySim: aRect

I aPen afont aForm I

aForm := (Form width: 600 height: 400).

afont := (Font applicationFont).

aPen := (Pen new: aForm).

aPen place: 65 @ 25;

centerText: 'CCU' font: afont.

aPen place: 50 @ 50; down; black;

polygon: 35 sides: 4.

aPen place: 66 @ 41;

centerText: controllerFreq font: afont.

aPen place: 115 @ 75;

centerText: 'ANT' font: afont.

aPen place: i00 @ 100; down; black;

polygon: 35 sides: 4.

aPen place: 116 @ 91;

centerText: antennaFreq font: afont.

aPen place: 165 @ 125;

centerText: 'MMU' font: afont.

aPen place: 150 @ 150; down; black;

polygon: 35 sides: 4.

aPen place: 166 @ 141;

centerText: mmuFreq font: afont.

^aForm.

I t

MISSION

EVACS Simulation Report

B-8

6/30/92

EvacsSimulationinSmallTalk
(simulationsupport)

!TextDisplayer class methods ! f

!TextDisplayer methods t

" modified TextPane dispatcher, method modify always returns false

(closing will not ask to have changes saved), no other changes

11

modified "user modification not significant"

^ false

t!

!TextDisplayPane class methods t ,

!TextDisplayPane methods v

" modified TextPane, defaultDispatcherClass returns TextDisplayer

no other changes

1!

defaultDi spatcherClass

^ TextDisplayer

I !

MISSION

EVACS Simulation Report

B-9

6/30/92

EvacsSimulationin SmallTalk
(simulationsupport)

I EvacsStack class methods ! '

EvacsStack methods T

subset of and renaming of orderedCollection methods, no new representation

push: newObject

(super addFirst: newObject).

pop

^ (super removeFirst)

!

pushAll : aCollection

(super addAllFirst: aCollection)

!

readTop

^ (contents at: startPosition).

! !

MISSION

EVACS Simulation Report

B-10

6/30/92

Evacs Simulation in SmallTalk

(EVACS application code)

!CentralController class methods ' '

!CentralController methods '

" models the central controller (base station) for the Evacs application

subclass to: Evacs, subclass to: TransactionParticipant

for Transaction Participant

: currentTM permanentStore status

for Evacs

: simWindow controller

for CentralController

: mmuArray antennaMgr frequency MMUsCount

setMaxg_4Us: maxMMUs

andSimWindow: aSimWindow

mmuArray := (Array new: m_s).

antennaMgr := (AntennaMgr new) setSimWindow: aSimWindow

andMaxMMUs: maxS_fUs.

mmusCount := 0.

simWindow := aSimWindow.

controller := self.

(antennaMgr antennaArray)

do: [:anAntenna 1

(anAntenna setMaxMMUs: maxMMUs

andSimWindow: simWindow

andController: controller).

].

currentState

^ (super addState:

((Dictionary new) at: #controllerSlot

put: frequency;

yourself)).

setStateTo: state

(super restoreState: state).

frequency := (state at: #controllerSlot).

(simWindow controllerFreq: frequency).

prepared

^ ((frequency at: i) < $5). "ist digit of frequency < 5"

registerMMU: mmu

mmusCount := mmusCount + I.

(mmuArray at: mmusCount put: mmu).

^ mmusCount

I

"cont i nued"

MISSION

EVACS Simulation Report

B-11

6/30/92

EvacsSimulationin SmallTalk
(EVACSapplicationcode)

"CentralController methods continued"

changeFreq: newFreq

" Implements the essential function of EVACS sim, that of changing the

frequencies of the MMUs and antennas in a coordinated fashion. Changes

are implemented as transactions to ensure integrity. In the EVACS sim

this method is also called as a top-level transaction thus all

transactions here and subsequently created are sub-transactions.

11

I an594U mmuNum tm success I

frequency := newFreq.

mmuNum := I.

anMMU := (mmuArray at: mmuNum).

tm := TransactionManager

runAsNewTransaction:

[anMMU changeFrequencyTo: newFreq]

id: 'controller=>anMMU.changeFreq '

parent: currentTM

receiver: anS@fU.

success := ((tm status) = #completed).

(simWindow textOut: ('transaction success: ', (success printString))).

"to differentiate the MMUs from the antenna manager if the mmu fails, it

is renentered into the parent transaction with a dummy value of 000Hz

I!

(success)

ifFalse : [

(anMMU enter: currentTM).

(anMMU changeFrequencyTo: '000Hz')].

tm := TransactionManager

runAsNewTransaction:

[antennaMgr changeAntennasTo: newFreq

for: mmuNum]

id: 'controller=>antennaMgr.changeFreq'

parent: currentTM

receiver: antennaMgr.

success := ((tm status) = #completed).

(simWindow textOut: ('transaction success: ', (success printString))).

(simWindow controllerFreq: newFreq).

11

MISSION

EVACS Simulation Report

B-12

6/30/92

EvacsSimulationin SmallTalk
(EVACSapplicationcode)

' MMU class methods ' '

! MMU methods I

" models behavior of an independent Manned Manuvering Unit

subclass of Evacs, subclass of TransactionParticipant

for TransactionParticipant

: currentTM permanentStore status

for Evacs

: simWindow controller

for

: number frequency

setController: theController

andSimWindow: theSimWindow

controller := theController.

number := (controller registerMMU: self).

simWindow := theSimWindow.

currentState

^ (super addState:

((Dictionary new) at: #mmuSlot

put: frequency;

yourself)).

setStateTo: state

(super restoreState: state).

frequency := (state at: #mmuSlot).

(simWindow anMMUFreq: frequency).

prepared

^ ((frequency at: 2) < $5).

changeFrequencyTo: newfrequency

frequency := newfrequency.

(simWindow anMMUFreq: frequency).

(simWindow textOut:

('This is an _ and Im changing frequency to', frequency)).

I !

MISSION

EVACS Simulation Report

B-13

6/30/92

EvacsSimulationin SmallTalk
(EVACSapplicationcode)

! AntennaMgr class methods i

newWith: aSimWindow

^ (super new) initWith: aSimWindow

TT

! AntennaMgr methods '

" coordinates a collection of three antennas at the base station

subclass of Evacs, subclass of TransactionParticipant

for TransactionParticipant

: currentTM permanentStore status

for Evacs

: simWindow controller

for antennaMgr

: antennaArray frequencyArray

setSimWindow: aSimWindow

andMaxMMUs: maxMMUs

simWindow := aSimWindow.

antennaArray := (Array with: (Antenna new)

with: (Antenna new)

with: (Antenna new)).

frequencyArray := (Array new: ma_s).

antennaArray

^ antennaArray

currentState

^ (super addState:

((Dictionary new) at: #antennaMgrSlot

put: (frequencyArray shallowCopy);

yourself)).

setStateTo: state

(super restoreState: state).

frequencyArray := (state at: #antennaMgrSlot).

(simWindow antennaFreq: (frequencyArray at: I)).

prepared

^ ((((frequencyArray at: i) at: 3) = $4)

l (((frequencyArray at:l) at: 3) = $5)).

"continued"

MISSION

EVACS Simulation Report

B-14

6/30/92

EvacsSimulationin SmallTalk
(EVACSapplicationcode)

"AntennaMgr methods continued"

changeAntennasTo: newFreq

for: anMMU

I tm anAntenna I

(frequencyArray at: anMMU put: newFreq).

(1 to: 3)

do: [:num I

anAntenna := (antennaArray at: num).

tm := TransactionManager

runAsNewTransaction:

[(anAntenna changeFrequencyOfMMU: 1 to: newFreq)]

id: 'antennaMgr=>anAntenna.changeFreq '

parent: currentTM

receiver: anAntenna.

].

(simWindow antennaFreq: newFreq).

! !

MISSION

EVACS Simulation Report

B-15

6/3O/92

EvacsSimulationin SmallTalk
(EVACSapplicationcode)

! Antenna class methods ! l

I Antenna methods !

" models behavior of an independent antenna at the base station

subclass of Evacs, subclass of TransactionParticipant

for TransactionParticipant

: currentTM permanentStore status

for Evacs

: simWindow controller

for Antenna

: frequencyArray

setMaxMMUs: maxMMUs

andSimWindow: aWindow

andController: aController

frequencyArray := (Array new: max/_MUs).

simWindow := aWindow.

controller := aController.

currentState

^ (super addState:

((Dictionary new) at: #antennaSlot

put: (frequencyArray shallowCopy):

yourself)).

setStateTo: state

(super restoreState: state).

frequencyArray := (state at: #antennaSlot).

(simWindow textOut:

('This is anAntenna, change be done to ', (frequencyArray at: i))).

prepared

^ (((frequencyArray at: i) at: 3) < $5).

changeFrequencyOfMMU: number to: frequency

(frequencyArray at: number put: frequency) .

(simWindow textOut :

('This is anAntenna, change be done to ', frequency)).

I !

MISSION

EVACS Simulation Report

B-16

6/30/92

EvacsSimulationin SmallTalk
(transactionsupport)

i TransactionManager class methods

runAsNewTransaction: block

id: userId

parent: parentTransaction

receiver: participantObject

" Creates transaction, executes block within it and invokes completion

processing. Receiver must be object receiving message in block "

I newTM i

newTM := (super new)

initWithID: userId;

setParents: parentTransaction.

(participantObject enter: newTM).

(block value). "execute the transaction's code"

(newTMprocessingComplete).

^ newTM

1 !

' TransactionManager methods !

" serves to coordinate transaction 2-phase commit and abort

: id participants status transactionHierarchy subTs

initWithID: userId

" sets user id (string) and initializes collection variables and status "

id := userId.

subTs := (Bag new).

participants := (Set new).

status := #created.

setParents: parentTransaction

" sets transaction hierarchy, including all parents and itself "

transactionHierarchy := (EvacsStack new).

(parentTransaction notNil) ifTrue: [

(transactionHierarchy pushAll: (parentTransaction transactionHierarchy)).

(parentTransaction registerSubTransaction: self)

].

(transactionHierarchy push: self).

!

" continued... "

MISSION

EVACS Simulation Report

B-17

6/30/92

EvacsSimulationin SmallTalk
(transactionsupport)

" transactionManager methods cont. "

processingComplete

" initiate two phase commit: send prepare message to all participants

if participants all prepared, commit and send complete messages "

I success parentTM i

status := #preparing.

success := true. "for now"

participants do: [:participant i

success := success & (participant prepareCon_nitment)].

(success)

ifTrue: [

status := #committed. " the binary arbiter of commitment "

(transactionHierarchy pop).

parentTM := (transactionHierarchy readTop).

participants do: [:participant I

(participant completeCommitment: parentTM)].

(parentTM notNil) ifTrue: [

(parentTM inheritParticipants: participants)].

status := #completed.

]

ifFalse: [(self abort)].

I

abort

" send abandonTransaction message to all participants "

status := #aborted.

participants do: [:participant i

(participant abandonTransaction)].

registerParticipant : participantObject

(participants add: participantObject).

!

inheritParticipants : subTparticipants

(participants addAll: subTparticipants).

I

registerSubTransaction: transactionManager

(subTs add: transactionManager).

transactionHierarchy

^ transactionHierarchy

!

status

^ status

I i

MISSION

EVACS Simulation Report

B-18

6/30/92

EvacsSimulationin SmallTalk
(transactionsupport)

i TransactionParticipant class methods

new

^ (super new) init.

! !

' TransactionParticipant methods T

" provides protocol and representation for objects which participate in

transaction

: currentTM permanentStore status

init

permanentStore := (PermanentStore new).

status := #free.

currentState "returns state as collection of state information"

"(self implementedBySubclass)"

^ self addState: (Dictionary new) "subclass state, class state"

setStateTo: state "sets state to contents of stateCollection"

"(self implementedBySubclass)."

self restoreState: state.

addState: state "adds this class' instance variables to state object"

(state at: #participantSlot

put: (Array with: status

with: currentTM)).

^ state

restoreState: state "restores this class' instance variables"

J thisClassState l

thisClassState := (state at: #participantSlot).

currentTM := thisClassState at: 2.

status := thisClassState at: I.

prepared "returns true if object is ready to commit"

"(self implementedBySubclass)."

^ true "by default"

"Continued"

MISSION

EVACS Simulation Report

B-19

6/30/92

EvacsSimulationinSmallTalk
(transactionsupport)

"TransactionParticipant methods continued"

enter: enteredTM

I aCurrentState l

"enter into transaction, if not current transaction save state"

(currentTM ~= enteredTM) ifTrue: [

(permanentStore push: (self currentState)). "recovery value"

status := #inTransaction.

currentTM := enteredTM.

(enteredTM registerParticipant: self).

o

(permanentStore update: (self currentState)). "current value"

prepareCommitment

"check status, if ok prepare for commitment"

^ ((self prepared) ifTrue: [

(permanentStore update: (self currentState)).

status := #prepared.

];

yourself)

completeCommitment: parentTM

(self restoreState: (permanentStore readTop)).

"class variables only, not newly calculated subclass variables"

(parentTM notNil)

ifTrue: ["enter parent transaction"

" the following is equivalent to leaving the current transaction (pop)

and entering the parent transaction (push if not current transaction)

but inverted as an optimization (pop if parent is current transaction)"

(currentTM = parentTM)

ifTrue: [(permanentStore pop).]

ifFalse: [currentTM := parentTM.

status := #inTransaction]

]

ifFalse: ["leave current transaction"

(permanentStore pop)

].

abandonTransaction

I recoveryState [

recoveryState := (permanentStore pop).

(self setStateTo: recoveryState).

(permanentStore update: recoveryState).

! !

MISSION

EVACS Simulation Report

B-20

6/30/92

EvacsSimulationin SmallTalk
(transactionsupport)

w PermanentStore class methods

new ^(super new) init.

II

! PermanentStore methods f

" provides facility for saving an object's state & recovery states

: currentState recoveryStack

i!

init

recoveryStack := (EvacsStack new).

f

push: recoveryState

recoveryStack push: recoveryState.

!

update: newCurrentState

currentState := newCurrentState.

I

pop ^ recoveryStack pop

readCurrent ^ currentState

I

readTop ^ (recoveryStack readTop)

f !

!CentralController methods !

changeFreq: newFreq

} anMMUmmuNum tm success anAntenna i

frequency := newFreq.

mmuNum := l.

anMMU := (mmuArray at: mmuNum).

" regardless of antenna manager's success or failure,

antenna 1 will be entered into transaction directly "

anAntenna := ((antennaMgr antennaArray) at: i).

tm := TransactionManager

runAsNewTransaction:

[anAntenna changeFrequencyofMMU: 1 to: newFreq]

id: 'controller=>anAntenna.changeFreq'

parent: currentTM

receiver: anAntenna.

tm := TransactionManager

runAsNewTransaction:

[anMMU changeFrequencyto: newFreq]

id: 'controller=>anMMU.changeFreq'

MISSION

EVACS Simulation Report

B-21

6/30/92

EvacsSimulationin SmallTalk
(alternativeimplementationof centralController.changeFreq)

parent: currentTM

receiver: anMMU.

success := ((tm status) = #completed).

(simWindow textOut: ('transaction success: ', (success printString))).

"to differentiate the MMUs from the antenna manager if the mmu fails, it

is renentered into the parent transaction with a dummy value of 000Hz "

(success)

ifFalse: [

(aru_MU enter: currentTM).

(anMMU changeFrequencyto: '000Hz')].

tm := TransactionManager

runAsNewTransaction:

[antennaMgr changeAntennasTo: newFreq

for: mmuNum]

id: 'controller=>anMMU.changeFreq'

parent: currentTM

receiver: antennaMgr.

success := ((tm status) = #completed).

(simWindow textOut: ('transaction success: ', (success printString))).

(simWindow controllerFreqChangedto: newFreq).

MISSION

EVACS Simulation Report

B-22

6/30/92

EvacsSimulationin SmallTalk
SmalltalkApplicationDefinition

"construct application"

((Smalltalk at: #Application ifAbsent: [])

isKindOf: Class) ifTrue: [

((Smalltalk at: #Application) for:'.Evacs Sim')

addClass: EvacsRoot;

addClass: TransactionManager;

addClass: TransactionParticipant;

addClass: PermanentStore;

addClass: EvacsStack;

addClass: Evacs;

addClass: SimWindow;

addClass: TextDisplayer;

addClass: TextDisplayPane;

addClass: CentralController;

addClass: MMU;

addClass: AntennaMgr;

addClass: Antenna;

comments: nil;

initCode: nil;

finalizeCode: nil;

startUpCode: nil

MISSION

EVACS Simulation Report

B-23

6/30/92

